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Abstract

Marangoni convection occurs around vapor bubbles during nucleation and growth due to the temperature
variation along the surface. The surface tension variation resulting from the temperature gradient along the surface

causes Marangoni convection. Marangoni convection is of importance in crystal growth melts and may in¯uence
other processes with liquid±vapor interfaces, in addition to boiling. The in¯uence of Marangoni induced convection
is more obvious under microgravity but also occurs in earth gravity. This paper presents a similarity solution for

Marangoni induced ¯ow both for the velocity pro®le and the temperature pro®le, assuming developing boundary-
layer ¯ow along a surface with various imposed temperature pro®les. The surface velocity, the total ¯ow rate and
the heat transfer characteristics are given for various temperature pro®les and various Prandtl numbers. Since the

predicted boundary layer thickness would be much less than the diameter of vapor bubbles during nucleate boiling,
the bubble surface curvature e�ects can be neglected and this analysis can be used as a ®rst estimate of the e�ect of
Marangoni ¯ow around a vapor bubble. 7 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Marangoni convection occurs around vapor bubbles

during nucleation and the growth of vapor bubbles
due to the surface tension variation caused by tem-

perature and/or concentration variations along the

bubble surface. Experimental tests and numerical an-

alyses of nucleate boiling have shown that the heat
transfer due to Marangoni ¯ow can be signi®cant

under microgravity and may also be important in

earth gravity [1,2]. Marangoni induced ¯ow is also of

importance in crystal growth melts where the ¯ow pro-

duces undesirable e�ects under microgravity in the
same manner as buoyancy induced natural convection
[3].

Numerous investigations of Marangoni convection
have been reviewed in the literature, for example by
Arafune and Hirata [4] and Croll et al. [5] Some
papers very relevant to this work include the order-of-

magnitude analysis of Marangoni induced ¯ow given
by Okano et al. [6] showing the general trends for the
Grashof number, Marangoni number, Prandtl number

and melt aspect ratio on the Reynolds number. Some
experimental and numerical investigations of Maran-
goni ¯ow for various substances in geometries with ¯at

surfaces were presented by Arafune and Hirata [4],
Okano et al. [6], and Arafune et al. [7]. Very recently,
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Arafune and Hirata [8] presented a similarity analysis

for the velocity pro®le for thermal and solutal Maran-
goni ¯ow, but the results are e�ectively limited to sur-
face tension variations linearly related to the surface

position. Slavtchev and Miladinova [9] presented simi-
larity solutions for surface tension that varied as a
quadratic function of the temperature as would occur
near a minimum. Schwabe and Metzger [10] exper-

imentally investigated the Marangoni convection on a
¯at surface combined with natural convection in a
unique geometry where the Marangoni e�ect and the

buoyancy e�ect could be varied independently.
This paper presents a similarity solution for Maran-

goni induced ¯ow over a ¯at surface due to an

imposed temperature gradient. The analysis assumes
that the surface tension varies linearly with tempera-
ture but the temperature variation is a power-law func-
tion of the location. In addition, the analysis assumes

that a boundary layer develops along the surface due
to the coupled Marangoni convection. The boundary
layer equations for both the momentum equations and

the energy equation are transformed to ordinary di�er-
ential equations which are then solved numerically
using the Runge±Kutta method.

2. Theoretical analysis

For laminar boundary layer ¯ow over a ¯at plate,

the Navier±Stokes equations can be reduced to the

continuity equation and the boundary layer momen-
tum (Eq. (8)):
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The boundary layer energy equation is:
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The Marangoni e�ect is incorporated as a boundary

condition relating the temperature ®eld to the velocity
®eld. The boundary conditions at the surface are:
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Far from the surface, the velocity boundary condition
is:

Nomenclature

a, d, h exponents in similarity transformation
A temperature gradient coe�cient (K/mk+1)
C1 similarity transformation coe�cient (ma)

C2 similarity transformation coe�cient
(s m(kÿ4)/3)

f(Z ) stream function similarity variable

K temperature gradient exponent
_m mass ¯ow rate per unit width (kg/m s)
m correlation coe�cient in Eq. (31)

n correlation coe�cient in Eq. (31)
Ma Marangoni number, Eq. (17)
Nu Nusselt number, Eq. (22)
Pr Prandtl number

q0 heat ¯ux (W/m2)
Re Reynolds number, Eq. (18)
T temperature (K)

u, v velocities (m/s)
x, y coordinates (m)

Greek symbols
a thermal di�usivity (m2/s)

d boundary layer thickness (m)
f dimensionless similarity temperature
Z location similarity variable

Zd dimensionless momentum boundary layer
thickness

Zt dimensionless thermal boundary layer thick-

ness
l thermal conductivity (W/m K)
m dynamic viscosity (N s/m2)

n kinematic viscosity (m2/s)
y temperature similarity variable (K mh)
r density (kg/m3)
s surface tension (N/m)

c stream function (m2/s)

Subscripts

L average over surface length
x local value
t thermal boundary layer thickness

d momentum boundary layer thickness
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u�x,1� � 0 �5a�
Two thermal boundary conditions can be considered:

T�x,1� � T1 � T�0, 0� or
@T
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For the stream function de®ned as:

u � @c
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and v � ÿ@c
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similarity variables can be introduced as:

Z � C1x
dy �7a�

f �Z� � C2x
ac�x, y� �7b�

y�Z� � �T�x, y� ÿ T�0, 0��xh �7c�
and then the governing equations can be written as:
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where the coe�cients are de®ned as:
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For similarity, the exponents are related to the tem-
perature gradient exponent, k in equation Eq. (4c) by:

d � kÿ 1

3
�10a�

a � ÿ2ÿ k

3
�10b�

h � ÿ1ÿ k �10c�
The momentum equation boundary conditions are:

f �0� � 0 �11a�

f 00�0� � ÿ1 �11b�

f 0�1� � 0 �11c�
For the energy equation boundary conditions, two

types of boundary conditions can be considered for the

boundary condition far from the surface:

y�0� � A �12a�

y�1� � 0 or y 0�1� � 0 �12b�

Since the energy equation is linear, the functional rep-

resentation for the temperature can be simpli®ed by
de®ning:

y�Z� � Af�Z� �13�

Substituting Eq. (13) into the energy equation, Eq.

(8b), and the boundary conditions, Eq. (12), gives the
following equations for f:

f 00 � Pr�a ff 0 ÿ h f 0f� �14�

f�0� � 1 �15a�

f�1� � 0 or f 0�1� � 0 �15b�

The surface velocity is given by:
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���������������������������
��ds=dT �A� 2
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3

s
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Note that the temperature gradient coe�cient can be

de®ned in terms of the total temperature di�erence
along a surface of length, L, as A=DT/Lk+1 so that
the Marangoni number can be de®ned for a general

temperature pro®le as:

MaL � �ds=dT ��DT=L
k�1�Lk�2

ma
� �ds=dT �DT L

ma
�17�

The Reynolds number, de®ned in terms of the surface
velocity, is then related to the Marangoni number as:

ReL � u�x, 0�L
n

� f 0�0�Ma 2=3
L Prÿ2=3 �18� �18�

The total mass ¯ow in the boundary layer per unit
width can be written as:

_m �
�1
0

ru dy �
�����������������
ds
dT

Arm
3

r
x �k�2�=3f �1� �19�

or in dimensionless form as:

Rex � r �ud
m
� f �1�Ma1=3x Prÿ1=3 �20�

The local heat ¯ux is:

q 00�x� � ÿl @T
@y

����
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The local Nusselt number is:

Nux � q 00�x�x
l�T�x, 0� ÿ T�x,1��

� ÿMa1=3x Prÿ1=3
�
x

L

��k�2�=3
f 0�0� �22�

The average Nusselt number based on the average
temperature di�erence between the temperature of the

surface and the temperature far from the surface is:

NuL � ÿ3k� 6

4k� 5
Ma1=3L Prÿ1=3 f 0�0� �23�

The similarity transformation used here for the
momentum equation di�ers in several ways from that
used by Arafune and Hirata [8]. Besides slightly di�er-

ent de®nitions of the similarity variables, the most im-
portant di�erence lies in that the present derivation is
based on a general form of the temperature variation

on the surface. The results from Arafune and Hirata
[8] are useful only for a linear variation of the surface
tension with location. The present derivation is also

extended to include the energy equation.

3. Similarity results with discussion

The two governing equations, Eqs. (8a) and (14),
were solved numerically using the fourth-order Runge±
Kutta method with at least 20 000 steps. The shooting

method was used to determine the unknown boundary

conditions at Z=0, i.e. f '(0) for the momentum
equation and f '(0) for the energy equation. The maxi-
mum value for the independent variable, Z, which was

a function of the Prandtl number, was always chosen
to be at least four times the maximum boundary layer

thickness. The minimum value that could be used for
the momentum equation was Z=20 which was su�-

cient for the energy equation with Prandtl numbers
greater than 2. The thermal boundary layer thickness,

and hence, the maximum value of Z will be much
greater for Prandtl numbers less than 2. The results
presented here were all independent of the number of

steps and the maximum value of Z.
The similarity stream function, f, is a function of the

exponent, k, while the temperature function, f, is a
function of both k and the Prandtl number. The gov-

erning equations, Eqs. (8a) and (14), were solved
together with the boundary conditions in Eqs. (11),

(15a) and (15b) for various values of k and Prandtl
number. Typical velocity and temperature pro®les are
given in Fig. 1 for several representative values of

Prandtl number and for k=0 which is a linear surface
temperature pro®le. The results for the two di�erent

energy equation boundary conditions at the outer edge
were the same since the slopes of the temperature pro-

®les shown in Fig. 1 (which were calculated using the
boundary condition f(1)=0) all approach zero at
large Z. When using the boundary condition f '(1)=0,

the value of f always approached zero for large Z. The
magnitude of the slope of the temperature pro®le at

Fig. 1. Velocity and temperature pro®les for k=0.
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the surface decreases with decreasing Prandtl number

as the thermal boundary layer gets very thick for low

Prandtl numbers.

The variations of the surface velocity, the boundary

layer thickness and the total ¯ow rate in the boundary

layer are given as functions of k in Fig. 2, of which k
= 0 refers to a linear pro®le, k= 1 is quadratic, while

k=ÿ0.5 would be a temperature variation relative to

the square root of x. The minimum value of k is ÿ1,
which results in no temperature variation on the
bubble surface and thus no Marangoni induced ¯ow.

The momentum boundary layer thickness was de®ned

as usual as the point where the velocity is 1% of the

surface velocity. The velocity for small values of k is

greater because for a ®xed total temperature di�erence
across the surface (i.e. ®xed temperature gradient coef-

®cient, A ), the surface temperature pro®le for a small

value of k is steeper near the leading edge which pro-

vides more ¯ow (Fig. 3). For larger values of k, the
slope of the temperature pro®le is steeper near the

trailing edge where the boundary layer is thicker and

the additional acceleration of the ¯ow has less e�ect.

The mass ¯ow rate, which is proportional to f(1) in
Eq. (19), follows the same trend. The boundary layer

thickness is the greatest for the uniformly increasing

temperature pro®le, k = 0. For k greater than or less

than 0, the temperature pro®le over part of the plate is

relatively ¯at, so the ¯ow does not accelerate much in
that region and the boundary layer does not grow. The

boundary layer thickness, which varies from about 4

to 5 for the range in Fig. 2 and is 4.79 for the linear

temperature pro®le, can also be used to calculate the

boundary layer thickness on a curved surface such as a

vapor bubble if the thickness is small compared to the
curvature. For water near the normal boiling point

around a bubble roughly 1 mm in diameter, the maxi-

mum boundary layer thickness is about one tenth of

the bubble diameter, so the results presented here

could be used at least as an initial estimate of the ¯ow
and heat transfer in the liquid boundary layer around

the bubble due to Marangoni convection around the

bubble.

The surface velocities are compared to the velocities

measured by Arafune and Hirata [8] for gallium and

indium in a shallow pool in Fig. 4. Although they
measured surface velocities for other ¯uids (silicone

oils with high Prandtl numbers), the present similarity

analysis only applies to the results for the liquid metals

which would essentially have a linear temperature dis-
tribution on the surface due to the high conduction

heat transfer rate. The similarity results agree well with

the measured velocities for indium. The similarity and

experimental results both agree with the analysis of
Okano et al. [6] which showed that the Reynolds num-

ber is proportional to the two-thirds power of the tem-

perature di�erence. The measured velocities for

gallium do not agree as well with the analysis and do
not vary as the two-thirds power of the temperature

perhaps due to buoyancy e�ects and the e�ect of the

entire recirculating ¯ow ®eld in the pool.

Two typical temperature pro®les for k = 0 and low

Prandtl numbers are shown in Fig. 5. The similarity

Fig. 2. Surface velocity, boundary layer thickness and ¯ow rate for various temperature gradient exponents.
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results are compared with an approximate analysis of

the energy equation for low Prandtl numbers which

have thermal boundary layers much thicker than the

momentum boundary layers. Therefore, over most of

the domain, f '(Z ) is equal to zero and f(Z ) is equal to

f(1) so the energy equation given in Eq. (14) can be

approximated by

f 00 � Pr a f �1�f 0 �25�

The solution of Eq. (25) subject to the boundary con-
ditions as given in Eqs. (15a) and (15b) is:

Fig. 3. Typical surface temperature pro®les.

Fig. 4. Comparison of experimental results of Arafune et al. [8] with similarity result for k=0 and Prandtl number for indium.
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f�Z� � eÿPr��k�2�=3�f �1�Z �26�

which is compared to the similarity solution in Fig. 5.
The temperature gradient at the surface for low
Prandtl numbers would then vary as

f 0�0� � ÿPr
�
k� 2

3

�
f �1� �27�

Therefore, the surface temperature gradient could be
expected to be proportional to the Prandtl number for
a given surface temperature variation and low Prandtl

numbers.
For high Prandtl numbers (Pr > 10), the thermal

boundary layer thickness is much thinner than the

momentum boundary layer thickness, so the energy
equation can be approximated by assuming that f(Z ) is
essentially zero and that f '(Z ) is essentially f '(0) for

small Z. Therefore, for high Prandtl numbers, the
energy equation may be approximated by

f 00 � Pr�k� 1� f 0�0�f �28�

which has the solution

f�Z� � eÿ
��������������������
Pr�k�1� f 0 �0�
p

Z �29�

Then, the surface temperature gradient could be ap-
proximated by:

f 0�0� � ÿ
�����������������������������
Pr�k� 1� f 0�0�

p
�30�

The variation of the surface temperature gradient as a
function of the Prandtl number and the temperature

gradient exponent is shown in Fig. 6. The similarity
results are compared to an equation with correlation
coe�cients m and n of the form:

f 0�0� � ÿ mPr

1� n
������
Pr
p �31�

which gives the proper variation of the surface tem-

perature gradient with Prandtl number at high and low
Prandtl numbers. The graph in Fig. 7 shows that the
slope of the curve on the logarithmic axes is equal to

one for low Prandtl numbers (Pr < 0.1) and is equal
to 0.5 for high Prandtl numbers (Pr > 10). Therefore,
for high Prandtl numbers, Eq. (30) is parallel to but

slightly below the full similarity solution for Pr > 10,
while for low Prandtl numbers, Eq. (27) is parallel to
but noticeably less than the similarity solution even for
Pr = 0.001. Therefore, the coe�cients, m and n, are

not equal to the values predicted by Eqs. (27) and (30).
The di�erences occur because the assumptions con-
cerning the values of f(Z ) and f '(Z ) for low and high

Prandtl numbers are not valid near the surface, so that
the values of the surface temperature gradient pre-
dicted by Eqs. (27) and (30) are accurate qualitatively.

The local Nusselt number given by Eq. (22) can be
written for low Prandtl numbers as:

Nux1Ma1=3x Pr 2=3
�
x

L

��k�2�=3 k� 2

3
f �1� �32�

Fig. 5. Temperature distributions for low Prandtl numbers and k=0.
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and for high Prandtl numbers:

Nux1Ma1=3x Pr1=6
�
x

L

��k�2�=3 ������������������������
�k� 1� f 0�0�

p
�33�

Therefore, the slope of the Nusselt number is pro-
portional to the two-thirds power of the Prandtl num-

ber for low Prandtl numbers and is proportional to the

one-sixth power of the Prandtl number for high

Prandtl numbers, as the thermal boundary layer

becomes thinner than the velocity boundary layer. In

addition, the coupling of the temperature and ¯ow

®elds means that the exponent k and the values of

f(1) and f '(0) are functions of Marangoni and Prandtl

Fig. 6. E�ect of surface temperature gradient.

Fig. 7. Surface temperature gradients for Pr>1.
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numbers which will introduce additional Marangoni
and Prandtl number e�ects.
The variation of the local Nusselt number with the

Marangoni number and location is shown in Fig. 8 for
low Prandtl numbers (Pr = 0.01) and in Fig. 9 for
high Prandtl numbers (Pr = 100). Both graphs are for

a linear surface temperature gradient, k = 0. The
increased ¯ow at higher Marangoni numbers has a sig-
ni®cant e�ect on the heat transfer even for low Prandtl

numbers (liquid metals) where conduction is signi®-
cant.
The average Nusselt number along the surface for

Fig. 8. Predicted local Nusselt number for low Prandtl numbers (Pr<0.01) and k=0.

Fig. 9. Predicted local Nusselt number for high Prandtl numbers (Pr>100) and k=0.

D.M. Christopher, B.-X. Wang / Int. J. Heat Mass Transfer 44 (2001) 799±810 807



low Prandtl numbers using Eq. (27) for the tempera-
ture derivative in Eq. (23) is:

NuL1 �k� 2� 2
4k� 5

f �1�Ma1=3L Pr 2=3 �34�

and for high Prandtl numbers, using Eq. (30) for the

temperature derivative in Eq. (23) is:

NuL13k� 6

4k� 5

������������������������
�k� 1� f 0�0�

p
Ma1=3L Pr1=6 �35�

The predicted average Nusselt number variation with

the surface temperature gradient exponent, k, and the
Marangoni number is shown in Fig. 10. The ®gure
shows that the Nusselt number is much larger for high

Prandtl numbers and that, the exponent k has little
e�ect on the average Nusselt number, especially for
high Prandtl numbers. As shown in Fig. 11, the coe�-

cient in Eq. (35), which includes all of the e�ects due
to the exponent k, varies by at most 5% for k from
ÿ0.75 to 2. Therefore, for high Prandtl numbers, a
reasonable estimate of the average Nusselt number,

regardless of the temperature gradient, will be:

NuL11:45Ma1=3L Pr1=6 �36�

For low Prandtl numbers, the variation of the coe�-
cient in Eq. (34) is much larger, with the value of the
coe�cient at k=ÿ0.75 more than twice the value at k

=1.
The thermal boundary layer thickness is de®ned as

usual as the location where the temperature di�erence

is 1% of the total temperature di�erence, i.e.

f�Zt� � 0:01 f�0� �37�

The thermal boundary layer thickness over the entire
range of Prandtl numbers is given in Fig. 12. Using

Eq. (26) for low Prandtl numbers, the thermal bound-
ary layer thickness can be de®ned as:

Zt �
ÿln�0:01�

Pr f �1���2� k�=3� �38�

while for high Prandtl numbers, using Eq. (29), the
thermal boundary layer thickness can be de®ned as:

Zt �
ÿln�0:01���������������������������������1� k�Pr f �1�p �39�

Eq. (38) is coincident with the lines in Fig. 12 for
low Prandtl numbers. Eq. (39) is somewhat higher

than the similarity solution, but parallel to it. The dis-
crepancy occurs because the assumptions concerning
the values of f(Z ) and f '(Z ) for low and high Prandtl

numbers are not valid near the surface, as mentioned
before. However, the trends indicated by Eqs. (38) and
(39) are correct. The thermal boundary layer thickness

variation will be inversely proportional to the Prandtl
number for low Prandtl numbers and inversely pro-
portional to the square root of the Prandtl number for
high Prandtl numbers. Also, the in¯uence of the expo-

nent k is greater for high Prandtl numbers as shown in
Fig. 12. In general, the thermal boundary layer thick-
ness variation can be written as a function of the

Prandtl number as:

Fig. 10. Predicted average Nusselt numbers for high and low Prandtl numbers.
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Zt �
1�md

������
Pr
p

nd Pr
�40�

Eq. (40) is plotted in Fig. 12 for k = 0. The

values of nd agree well with Eq. (38) while the values

of md/nd are somewhat smaller than the corresponding

coe�cient in Eq. (39).

The similarity analysis, based on the boundary layer

equations, assumes that the transverse derivatives of

the velocity and temperature are much larger than

Fig. 11. Predicted coe�cient in Eq. (35) to illustrate the e�ect of temperature gradient.

Fig. 12. Predicted thermal boundary layer thickness for various conditions.

D.M. Christopher, B.-X. Wang / Int. J. Heat Mass Transfer 44 (2001) 799±810 809



their axial derivatives. Analysis of the similarity trans-
formation shows that both are true if:

C1L
�k�2�=3 �

����������������������������������
�ds=dT �ArLk�2

m 2

3

s

�Ma1=3L Prÿ1=3w1 �41�

4. Conclusions

Marangoni convection has been analyzed for bound-

ary layer ¯ow over a ¯at surface with an imposed tem-
perature gradient. The governing equations were
solved using a similarity analysis applicable to both

linear and non-linear temperature gradients. For a
liquid pool heated at both ends, the surface tempera-
ture gradient would only be expected to be linear for

low Prandtl number ¯uids where the conduction in the
¯uid is much greater than the convection heat transfer.
The predicted surface velocities agree well with the
measured values for a shallow pool of liquid indium

[8].
The analysis gives the variation of the velocity and

temperature distributions in the boundary layer for

power-law variations of the surface temperature gradi-
ent. Equations are given for the surface velocity, the
total mass ¯ow rate and the heat ¯ux at the interface

as functions of Marangoni, Prandtl and Reynolds
numbers, the temperature gradient exponent k and the
location. For k = 0, the analysis agrees with previous
results for a linear temperature gradient (Okano et al.

[6]) that the Reynolds number based on the surface
velocity varies as the two-thirds power of the Maran-
goni number. The solution of the simpli®ed governing

equations shows that the Nusselt number is pro-
portional to the two-thirds power of the Prandtl num-
ber for low Prandtl numbers (Pr < 0.1) and is

proportional to the one-sixth power of the Prandtl
number for high Prandtl numbers (Pr > 10) as the
thermal boundary layer becomes thinner than the vel-

ocity boundary layer. The analysis also shows that for
high Prandtl numbers, the average Nusselt number is
practically independent of the surface temperature gra-
dient, so Eq. (35) can be used in general for high

Prandtl numbers.

For normal boiling of water, the Marangoni convec-
tion boundary layer around a vapor bubble predicted

by this analysis would be much less than the expected
bubble radius, so the present results can be used as an
initial estimate of the e�ect of Marangoni induced ¯ow

around a vapor bubble.
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